↓ Skip to main content

Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic…

Overview of attention for article published in BMC Biology, April 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
52 Mendeley
Title
Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection
Published in
BMC Biology, April 2016
DOI 10.1186/s12915-016-0255-4
Pubmed ID
Authors

Jelena Maric-Biresev, Julia P. Hunn, Oleg Krut, J. Bernd Helms, Sascha Martens, Jonathan C. Howard

Abstract

The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse. We show that the three regulatory IRG proteins (GMS sub-family), including Irgm1, each of which localizes to distinct sets of endocellular membranes, play an important role during the cellular response to IFN-γ, each protecting specific membranes from off-target activation of effector IRG proteins (GKS sub-family). In the absence of Irgm1, which is localized mainly at lysosomal and Golgi membranes, activated GKS proteins load onto lysosomes, and are associated with reduced lysosomal acidity and failure to process autophagosomes. Another GMS protein, Irgm3, is localized to endoplasmic reticulum (ER) membranes; in the Irgm3-deficient mouse, activated GKS proteins are found at the ER. The Irgm3-deficient mouse does not show the drastic phenotype of the Irgm1 mouse. In the Irgm1/Irgm3 double knock-out mouse, activated GKS proteins associate with lipid droplets, but not with lysosomes, and the Irgm1/Irgm3 (-/-) does not have the generalized immunodeficiency phenotype expected from its Irgm1 deficiency. The membrane targeting properties of the three GMS proteins to specific endocellular membranes prevent accumulation of activated GKS protein effectors on the corresponding membranes and thus enable GKS proteins to distinguish organellar cellular membranes from the membranes of pathogen vacuoles. Our data suggest that the generalized lymphomyeloid collapse that occurs in Irgm1 (-/-) mice upon infection with a variety of pathogens may be due to lysosomal damage caused by off-target activation of GKS proteins on lysosomal membranes and consequent failure of autophagosomal processing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 2%
Unknown 51 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 29%
Student > Master 5 10%
Researcher 4 8%
Student > Postgraduate 4 8%
Student > Doctoral Student 4 8%
Other 8 15%
Unknown 12 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 25%
Immunology and Microbiology 11 21%
Biochemistry, Genetics and Molecular Biology 9 17%
Medicine and Dentistry 2 4%
Chemistry 2 4%
Other 3 6%
Unknown 12 23%