↓ Skip to main content

Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M

Overview of attention for article published in BMC Plant Biology, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
31 Mendeley
Title
Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M
Published in
BMC Plant Biology, April 2017
DOI 10.1186/s12870-017-1027-1
Pubmed ID
Authors

Juan Vicente Muñoz-Sanz, Elena Zuriaga, Inmaculada López, María L. Badenes, Carlos Romero

Abstract

Apricot (Prunus armeniaca L.) exhibits a gametophytic self-incompatibility (GSI) system and it is mostly considered as a self-incompatible species though numerous self-compatible exceptions occur. These are mainly linked to the mutated S C-haplotype carrying an insertion in the S-locus F-box gene that leads to a truncated protein. However, two S-locus unlinked pollen-part mutations (PPMs) termed m and m' have also been reported to confer self-compatibility (SC) in the apricot cultivars 'Canino' and 'Katy', respectively. This work was aimed to explore whether other additional mutations might explain SC in apricot as well. A set of 67 cultivars/accessions with different geographic origins were analyzed by PCR-screening of the S- and M-loci genotypes, contrasting results with the available phenotype data. Up to 20 S-alleles, including 3 new ones, were detected and sequence analysis revealed interesting synonymies and homonymies in particular with S-alleles found in Chinese cultivars. Haplotype analysis performed by genotyping and determining linkage-phases of 7 SSR markers, showed that the m and m' PPMs are linked to the same m 0-haplotype. Results indicate that m 0-haplotype is tightly associated with SC in apricot germplasm being quite frequent in Europe and North-America. However, its prevalence is lower than that for S C in terms of frequency and geographic distribution. Structures of 34 additional M-haplotypes were inferred and analyzed to depict phylogenetic relationships and M 1-2 was found to be the closest haplotype to m 0. Genotyping results showed that four cultivars classified as self-compatible do not have neither the S C- nor the m 0-haplotype. According to apricot germplasm S-genotyping, a loss of genetic diversity affecting the S-locus has been produced probably due to crop dissemination. Genotyping and phenotyping data support that self-(in)compatibility in apricot relies mainly on the S- but also on the M-locus. Regarding this latter, we have shown that the m 0-haplotype associated with SC is shared by 'Canino', 'Katy' and many other cultivars. Its origin is still unknown but phylogenetic analysis supports that m 0 arose later in time than S C from a widely distributed M-haplotype. Lastly, other mutants putatively carrying new mutations conferring SC have also been identified deserving future research.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 19%
Researcher 5 16%
Student > Ph. D. Student 5 16%
Student > Bachelor 4 13%
Student > Doctoral Student 2 6%
Other 3 10%
Unknown 6 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 55%
Biochemistry, Genetics and Molecular Biology 3 10%
Environmental Science 1 3%
Unspecified 1 3%
Chemistry 1 3%
Other 0 0%
Unknown 8 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 May 2017.
All research outputs
#13,474,604
of 22,965,074 outputs
Outputs from BMC Plant Biology
#970
of 3,274 outputs
Outputs of similar age
#156,417
of 309,828 outputs
Outputs of similar age from BMC Plant Biology
#7
of 29 outputs
Altmetric has tracked 22,965,074 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,274 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,828 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.